

Optimizing technique of bifurcation stenting

Angela Hoye MB ChB, PhD Castle Hill Hospital Kingston-upon-Hull, UK

Conflicts of interest

I have no conflict of interest with respect to this presentation

The challenge of bifurcations

Heterogeneous group
Variable plaque distribution
Extent of side branch disease
Size of vessels
Variable angulation

Provisional stenting

 Randomised studies have shown that the majority of bifurcation lesions can be successfully treated with 1 stent

Single

2-stent

Colombo et al Circ 2004; Pan et al AHJ 2004; Steigen et al Circ 2006; Jensen et al Eurointervention 2008; Ferenc et al EHJ epub 2008; Colombo et al; Hildick-Smith at TCT 2008

Wire the side branch

 Compromise of SB occurs to some extent unpredictably

Predictors of Side Branch Failure Insights from the TULIPE Study (n=186)

	Success	Failure	p value
Age (years)	66 ± 11	57 ± 8	0.0007
MB ref diameter (mm)	3.1 ± 0.4	2.8 ± 0.3	0.0085
SB ref diameter (mm)	2.5 ± 0.5	2.2 ± 0.3	0.0413
Final kissing balloon (%)	98.1	76.5	0.0019
Jailed wire (%)	92.9	71.4	0.031

Brunel et al CCI 68:67-73

Choice of stent size

• The proximal reference diameter is always larger than the distal reference diameter

$$D_{\text{mother}} = 0.678 * (D_{\text{daughter 1}} + D_{\text{daughter 2}})$$

Finet et al Eurointervention 2007; Yifang Zhou et al. Phys. Med. Biol. 1999

Optimization of stent result

- 1. Choose the stent diameter related to the size of the <u>distal</u> main vessel
- 2. The proximal part of the stent is then postdilated (proximal optimisation technique (POT))
 - Optimise stent apposition in the proximal MV
 - Facilitates a "distal" cross as opposed to a proximal one to improve scaffolding of the ostium of the side branch

Proximal Optimization Technique (POT)

Courtesy of Dr Olivier Darremont

POT technique

The side branch

Bon-Kwon Koo et al JACC 2005; 46: 633-7

Relationship of wire crossing to side branch scaffolding

Side branch lesions are usually relatively short				
	TULIPE	Colombo	NORDIC	Bad Krozingen
Patients (n)	187	85	207*	101*
Reference diameter (mm)	2.7 ± 0.4	2.1 ± 0.3	2.6 ± 0.4	2.39 ± 0.31
Lesion length (mm)	5.6 ± 4.2	5.3 ± 4.2	6.0 ± 4.8	10.4 ± 4.1
Stenosis (%)	52 ± 17	52 ± 19	46 ± 26	53 ± 24

* Results for the provisional stenting group

Brunel et al CCI 2006;68:67-73; Colombo et al Circulation 2004;109:1244-49; Steigen et al Circulation 2006;114:1955-61; Ferenc et al EHJ epub 2008

Assess the angulation

Y-shape incidence ~ 75%

✓ Culotte✓ Crush✓ Mini crush

Ostial restenosis was associated with incomplete coverage

Lemos et al Circulation 2003;108:257-60

Crush stenting: influence of bifurcation angle

Influence of bifurcation angle on outcome following use of the crush technique

Dzavik et al AHJ 2006;152:762-9

Culotte stenting

Independent predictors of binary restenosis	Odds ratio (95% CI)	p value
Age (increase of 10 years)	2.38 (1.21-4.96)	0.01
Bifurcation angle (increase of 10°)	1.53 (1.04-2.23)	0.03
Baseline main vessel DS (increase of 10%)	1.47 (1.03-2.09)	0.03
SB ref. vessel diameter (decrease by 1mm)	31.83 (1.71-592.77)	0.02
Kissing balloon post-dilatation	0.37 (0.13-1.10)	0.07

Adriaenssens et al EHJ 2008;29:2868-76

Stents don't like large bends

Maximal inflation pressure

GW position was biased in the central core of the balloon and did not change during inflation.

Courtesy of Dr Murasato

Choice of stenting strategy: the importance of angulation

Bern/Rotterdam Experience: Occurrence of ST

Daemen J., et al., Lancet 2007; 369: 667-78.

Bern/Rotterdam experience

	ST (n = 152)	No ST (n = 7,994)	P- value
Age (years)	60.3 ± 12.0	62.5 ± 11.5	0.01
Male	76%	74%	0.78
Hypertension	41%	46%	0.29
Family history	29%	28%	0.79
Current smoking	38%	37%	0.87
Dyslipidaemia	49%	50%	0.74
Diabetes	19%	16%	0.32
Renal failure	6%	4%	1.00
LVEF (%)	52 ± 12	55 ± 12	0.07
ACS at presentation	71%	59%	0.02
Bifurcation treatment	28%	16%	0.003
Number of stents per patient	2.35 ± 1.73	1.95 ± 1.22	<0.0001
Total stent length per patient (mm)	42.3 ± 34.0	35.8 ± 25.1	0.002
Avg stent diameter / patient (mm)	2.83 ± 0.35	2.93 ± 1.44	0.48

Daemen J., et al., *Lancet* 2007; 369: 667–78.

Pre-Procedure Characteristics

	Early ST	Late ST	p-Value
Treated Vessel			
LMCA (%)	0.0	2.0	-
LAD (%)	54.0	54.0	0.989
LCA (%)	19.0	10.0	0.092
RCA (%)	27.0	33.0	0.378
SVG (%)	0.0	2.0	-
B2/C Lesions (%)	91.0	81.0	0.089
Bifurcation (%)	36.0	13.0	0.002
Diameter Stenosis (%)	17.0	19.0	0.740
Lesion Length (mm)	13.36	13.83	0.940
MLD (%)	0.41	0.57	0.465
MLD (excl total occlusion) (mm)	0.33	0.53	0.332
RVD (mm)	0.53	0.43	0.041
			007.000.007.7

Daemen J., et al., *Lancet* 2007; 369: 667–78.

IVUS predictors of DES thrombosis

2,575 pts treated with 4,722 SES

21 (0.8%) had ST within 30 days, 15 had IVUS

* Residual edge stenosis = edge lumen CSA <4.0mm² and plaque burden >70%

Fujii et al JACC 2005;45:995-8

 Registry data of 884 patients undergoing IVUSguided PCI compared with the same number treated with angiography-guided PCI

- Routine use of IVUS was shown to:
 - reduce the rate of subacute stent thrombosis (0.5% versus 1.4%, p=0.045)
 - reduce the cumulative stent thrombosis at 12 months (0.7% versus 2.0%, p=0.014)

Final kissing balloon post-dilatation

- Mandatory when using a 2-stent strategy
- Significant reduction in MV and SB restenosis
- Must be performed optimally using appropriately sized balloons:
 - Sequential high pressure balloon dilatation of the SB stent then MV stent
 - Finalise with lower pressure kissing balloon dilatation
 - Evaluate with IVUS

Is there a role for dedicated bifurcation stents?

Need to prove themselves:

- Safety and efficacy
- Ease of use / deliverability
- Cost effectiveness
 May have a "niche" role

Tryton side branch stent

Stepped balloon

3 Fronds

- Minimal Coverage

Wedding Band

Six Month Results

– Low TLR:

Low Late Loss:
Main Vessel (Proximal):
Main Vessel (Distal):
Side Branch:

3%

 $0.25 \pm 0.43 \text{ mm}$ $0.00 \pm 0.31 \text{ mm}$ $0.17 \pm 0.35 \text{ mm}$

Tryton

Summary and Conclusions

• To optimize the results of bifurcation stenting, consideration should be given to:

- The relative size of the vessels: optimize the dilatation of the proximal main vessel
- > The angulation: especially when the SB is to be stented

• <u>High pressure</u> kissing balloon post-dilatation can help provide some scaffolding of the SB ostium, and is mandatory if a 2-stent technique is used

• There is evidence for the role of adjunctive devices to guide therapy:

- **FFR** assessment of the SB
- **VUS** to ensure optimal stent expansion

